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ABSTRACT. Markov Decision Processes are a modelling tool used to derive a
set of sequential decisions which maximize the utility of a stochastic system.
Applications range from finance and insurance, to agriculture and natural
resource management, among many other. Building upon the foundational
concept of the Markov property, Markov Decision Processes have been studied
extensively since their introduction in the early 1950s. This paper provides a
survey of Markov Decision Processes, with commentary on the developmental
history, construction, and application. A simple example application is pro-
vided to illustrate the process.
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1. INTRODUCTION

Decision-making in the face of uncertainty and dynamic environments is a ubiqui-
tous problem across nearly any perceivable discipline. Markov Decisions Processes
(MDPs) offer a powerful framework for which to formally predict optimal action
sequences when uncertainty is inherent to the problem at hand. Building upon
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the mechanics of Markov chains and Markov reward processes, MDPs produce a
conceptual, dynamic model of a stochastic process for which to optimize in regard
to an expected terminal reward value, such as the wealth of a portfolio at the end of
a specified period. MDPs have extensive applications, often employed in the fields
of medicine, manufacturing (Alagoz et al.,2010)), communication, signal processing
(Hu and Yue, 2008), and financial management (Béuerle and Rieder, 2011). This
paper provides a survey of MDPs, including description of developmental history,
general formulations and underlying mechanics, extensions and adaptations, and
example applications. A case-study of a simple financial portfolio management ex-
ample problem is provided to illustrate the process of formulating and applying a
MDP.

2. OVERVIEW OF MARKOV DECISION PROCESSES

2.1. Definition.

While many variations and extensions exist, a Markov decision process in its most
general form is defined by a model of a discrete-time stochastic process that includes
an element of control by the agent. The common goal of MDPs is to solve a problem
involving dynamic and repeated decision making in systems that evolve with an
element of stochasticity and consequent uncertainty regarding behaviour prediction.
The stochastic system is modelled such that sequences of states are achieved by
transitioning between states for both finite or infinite periods. Transitions between
states are stochastic, and the probability of transitioning from one state to another
is based on a prescribed stochastic transition matrix. What distinguishes MDPs
from other similar Markov models is the reward and control elements. Rewards
simply represent a real-valued object (e.g. dollars) incurred to the agent upon
transitioning from one state to another, thereby introducing a objective measure
for which to assess the value or utility of a given system, or subset of its states.
An action set is introduced to the system to achieve a level of control for which to
'steer’ the stochastic system towards a goal of optimality. A given action taken from
a state may influence the probability of transitioning to another, and will always
influence the reward incurred upon transitioning (else, we would have a trivial
solution). The construction and conceptualization of MDPs is best described in a
sequential and cumulative manner, generally following the theories that comprise
their historical development and formulation. In this paper, we begin with the
foundational principles of MDPs introduced by Andrey Markov (see section
and proceed thereon, iteratively introducing concepts to our model that allow the
agent to model and solve increasingly complex stochastic problems.

2.2. History.

Since their formal introduction in the 1960s, MDPs have been studied exten-
sively and applied across many disciplines (Hu and Yue, [2008). The foundational
mechanistic underpinnings of MDPs can be traced back much further to the works
of their namesake; Russian mathematician Andrey Markov. In the 1900s, Markov
introduced a concept relating to the probabilistic convergence properties of depen-
dant random sequences, wherein a state-transition in a stochastic system is only
dependant on the current state. His work was subsequently termed as the Markov
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Property with the related extension describing sequences of random variables ex-
hibiting the property being the Markov Process (aka Markov Chains) (see section
. In 1954, Richard Bellman adopted the concepts introduced by Markov and
extended the ideas to develop and introduce the Markov Decision Process (Bauerle
and Rieder, [2011). Through later works, Bellman introduced his principal of op-
timality and related dynamic programming methods for which to optimize MDP
models in terms of expected value (Bellman, |1957, [1958)). Important subsequent
developments in the field came through Ronald Howards works on decision theory,
offering an alternative optimal solution method for MDPs (Howard, |1960), and
through David Blackwell (Blackwell, [1965), who provided several contributions re-
garding discounted state-occupancy measures and optimal policies, and introduced
the MDP model formulation we most-commonly see today.

2.3. Applications.

From their introduction the 1950s, MDPs have since seen fairly wide-spread
adoption throughout many fields. In some sense, whenever there is a need for de-
cision making under uncertainty, a MDP model can be employed as a useful tool.
Notably, MDPs are used extensively in the field of finance, where one can model
for an optimal decision-making policy to help guide a portfolio management (i.e.
re-balancing and asset allocation) or trading strategy (Béuerle and Rieder, |2011]).
Applications exist in precision agriculture to optimize crop yields under uncertain
predictions of climatic conditions by modelling for an optimal irrigation and fertil-
ization regime (White, [1993)). Therapeutic decision making, regarding estimates of
prognosis under various treatment plans available to a patient, often employ MDPs
to determine an optimal plan in terms of life expectancy and quality (Beck and
Pauker, 1983). MDPs are frequently deployed for operations research and supply
chain management purposes, where one can model for policies to guide optimal
inventory control with regard to uncertain projections of demand (White, [1993]).
Further applications are noted in the fields of water/natural resource management,
queuing theory, marketing, automotive insurance, autonomous manufacturing, en-
ergy grid management, and sports, amongst many others (Alagoz et al., |2010; Hu
and Yue, 2008; White, 1993).

2.4. Extensions.

While this paper focuses on discrete-time formulations of MDPs; it is noted that
a plethora of variants, extensions, and adaptations of MDP models exist to employ
in relevant contexts. Notably, there exists continuous-time MDPs, whereby state-
transitions are described by differential equations and can be conceptualized as
rates, as opposed to discrete jumps. Here, the agent can model decisions at any
given time, rather than at discrete intervals. Partially observable MDPs arise when
an agent does not have a complete set of information pertaining to the state space,
wherein a subset of states remains unobserved. For instance, this may arise when
deriving a MDP model where the longer-term drift (i.e. trend) of a stock price is not
feasibly known (Béuerle and Rieder, 2011)). Two special cases of partially observable
MDPs exist; Bayesian models, where the unobserved process is parameterized and
assumed not to change over time, and Hidden Markov models, where the unobserved
portion is assumed to evolve with the properties of a Markov Process. A piecewise
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deterministic MDP model is one in which the underlying process exhibits periodic
random jumps in state-evolution equilibria; for instance, when modelling over a
change in economic states (i.e. recessionary vs. expansionary conditions).

3. CONSTRUCTION OF MARKOV DECISION PROCESSES

3.1. The Markov Process.

The Markov process (also referred to as Markov chains) forms the fundamental
mechanistic framework from which MDPs are constructed. The Markov process
is a memoryless stochastic process that produces a sequence of random variables
describing the evolution of states, each exhibiting the Markov property.

Definition 3.1. The Markov property states that the future evolution of state
sequences is independent of the prior state sequence leading to the current state.
In other words, outcomes are only dependant on the current state. To satisfy the
Markov property, a sequence of random variables {S,,} must exhibit:

(3.2) P{Sn = Sp, | Sn,1 = Sn—1,-- .,SO = So} = P{Sn = Sn | Sn,1 = Snfl}
If true, the sequence {S,} forms a Markov process (Markov chain).

More formally, the Markov process can be formulated as a tuple:

(3.3) (Sv Qn(s))
Where:

e S denotes the finite state space, with individual states denoted by s € S.
e (Q(s) denotes the stochastic transition matrix, which describes the proba-
bility of moving from state s to state s’.

A simple case of a Markov process can be conceptualized by Figure [3.1] below.
0.34

0.20

0.67
Figure 1. Conceptual example of a 3-state Markov process, with transition
probabilities displayed on transition arrows.

The conceptual chain in Figureproduces the following transition matrix @, (s):

0.34 0.28 0.38
Qn(s) = [0.25 0.20 0.55
0.18 0.67 0.18



MARKOV DECISION PROCESSES - APPLICATIONS IN FINANCE 5

where the rows represent the current state s, and the columns represent the state
s’ in which to transition to. As such, stochastic transition matrices are square with
row vectors containing probabilities summing to 1. A Markov process describes
the probability of the occurence of a sequence of states {Sg, S1, ...S, } over a period
n; for instance, the sequence {Sy = $2,51 = 83,52 = $1,53 = 82,54 = s3} will
occur with probability [[ Qss(s) = 0.152. While this may be useful information
in certain contexts, it tells us little in regards to the expected real-world ’'value’
of achieving a given sequence. The proceeding section will introduce a value func-
tion to rectify this, thus providing Markov process models with a tool to improve
contextual relevance and objective applicability.

3.2. Markov Reward Processes.

A Markov Reward Process can be conceptualized as a Markov chain with 'reward’
values incurred upon transitioning between states. In its general case, a MRP is
formulated by a 4-tuple, as follows:

(3-4) (5,Q(s),7(s),9(s))

Where:

S denotes the finite state space, with individual states denoted by s € S.

Q(s) denotes the stochastic transition matrix, which describes the proba-

bility of moving from state s to state s'.

e 7(s) denotes the reward function, describing the reward incurred by moving
from state (s) to state s’ at time n.

e gn(s) denotes the expected terminal reward of the system at time N, pro-

ceeding from state s at time n, where future state-transition rewards are

reduced by a discount factor y €[0,1].

Evidently, the main difference between a Markov process and MRP is simply the
inclusion of the reward function r(s). This tells us that when the system transitions
from state s to s’ € S with probability Qs ¢ (s), we will incur the reward specified by
r(s’). Rewards are real-valued objects; for instance, a dollar amount or the yield of
a crop in kilograms per square kilometer. The inclusion of a reward function gives
the user an objective measure to maximize over a period by finding an optimal finite
set of state transitions, or simply to find the expected reward of a system over a
specified period. Rewards can be set in various manners; e.g. as a function of time
n or of some characteristic of state sequences. However, in most contexts, they are
prescribed in a static and deterministic sense, with unique values corresponding to
specific state transitions.

Extending from the example given in Figure 3.1} a conceptualization of a simple
Markov reward process is given in Figure below.
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q=0.34
Tsysy = —$2

g =025 g =0.38
Tsys, = 36 Tsiss = 93

g =028 g = 0.18
Tsysy = B4 Tsys, = 53

q=0.55
q = 0.20 TSQSB = $12

Tsysy = 91

q=0.15
Tsysg = 91

q = 0.67
Tsgsy = —94

Figure 2. Conceptual example of a 3-state Markov reward process, with
transition probabilities and reward values displayed on transition arrows.

The conceptual dollar-value reward function described in Figure [3:2] with state-
transitions coinciding with the same Q(s) as before, produces the following matrix:

—-$2 $4 83
r(s)=|% $1 $12
$3 —$4 $1

Considering the above, solving for an optimal state-transition sequence {Sg, S1, ...Sn }
over a period of n = 4 would yield $43 from the sequence: {Sy = $3,51 = 83,52 =
$1,S3 = 82,54 = s3}. However, since the system is stochastic, the probability of
achieving this specific optimal sequence is only 1.52% (] @ss(s)). We will see
in the proceeding section how the addition of controls to the system can aid in
achieving an optimal sequence (or higher expected reward) with higher probability.

3.3. Markov Decision Processes.

Continuing with the iterative construction, we will introduce the mechanistic
concept of controlled actions to the Markov reward process, thereby producing a
Markov decision process. We will focus here only on discrete time MDPs, although
variations for continuous time exist. A Markov Decision Process, in its general case,
is formulated by a 5-tuple, as follows:

(3.5) (S, A(s), Q(s,a), (s, a), 9(s))
Where:
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S denotes the finite state space, with individual states denoted by s € S.
e A(s) denotes the action space, with the individual actions denoted by a € A.
— Dy(s) ={a€ A| (s,a) € D,} denotes the subset of possible actions
from a given state s at time n, where D,, is the set of all possible
actions across states, and is a measureable subset of S x A.

e (Q(s,a) denotes the stochastic transition matrix, which describes the prob-
ability of moving from state s to state s’, given action a € D,,(s) has been
performed at state s.

e 7(s,a) denotes the reward function, describing the reward incurred by mov-
ing from state-action pair (s,a) to state s'.

e gn(s) denotes the expected terminal reward of the system at time N, pro-

ceeding from state s at time n, where future state-transition rewards are

reduced by a discount factor v €[0,1].

Functionally, a MDP tells us that when the system is in state s € S and a permissi-
ble action a € A is taken, the system will transition to state s’ € S with probability
Qss (a, s) and incur the reward specified by 7(s’, a). The inclusion of the action set
A adds an additional layer of complexity to the model by way of a decision function;
i.e. a specified control function to specify an action a to take while at state s.

Definition 3.6. A decision function is defined by a mapping f : S — A that
satisfies f(s) € A(s) for s € S, where A is the union of all action sets A(s), and F'
is the set of all decision functions.

Decision functions tell us what action a is to be chosen when the system is in
state s. Considering this linkage, the stochastic transition matrix is now populated
by state-action pairs (s, a), rather than states alone. We can define the set of all
possible state-action pairs by I' = {(s,a) | s € S,a € A}. Continuing on with the
conceptualized simple example, a Markov decision process framework with state-
action pairs is displayed in Figure below.

Figure 3. Conceptual example of a 3-state, 2-action MDP model. Transition
probabilities are not displayed due to complexity, but would reside on transition
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arrows stemming from each action towards a state. Mappings from states to
actions (shown in red) are specified by a decision function f(s).

3.3.1. The Value Function.

Let us introduce the key concept of value in the context of MDPs. Specifically,
we consider the wvalue function, which allows one to derive the expected reward
(or ’value’) of an MDP model and further determine state-action sequences that
may produce a maximal reward. In essence, solving for the maximal value of the
value function is, commonly, the objective of Markov decision processes. Solutions,
while not achievable in a closed-form, may be obtained through various recursive
algorithmic methods, outlined in section [3.3:4] The value of a state is denoted
by V(s), and refers to the total expected discounted reward one would obtain by
following a sequence of actions and states when starting from state s. Here, the
sequence of actions to be taken are specified by a policy, which is explained further
in the proceeding sections. To construct the value function, let us first consider
the following relation describing the total reward return G,, at time n incurred by
taking an arbitrary set of actions in our MDP model:

Gn(S) — Z ,ykfnfl Tk

k=n-+1
(3’7) Gn(s) = Tn+1(3, a) +v- Tn+2(3/v al) + 72 : Tn+3(3//a a//) + ...
Gn(8) = rna1(s,a) + y(rpa(s,a) +v - rpas(s”,a”) +...)
Gn(s) =rny1(s,a) + 'Y(GTH—Q(S/)

We can see that the total reward for a given state is determined by the immediate
reward upon taking action a plus the discounted reward value of the proceeding
state s’ transitioned to by taking said action. This gives us a ’look-ahead’ recursive
relationship describing a state value. The expected value of state s is determined
by summing over all possible sequences of actions, prescribed by a probability dis-
tribution 7, times the respective state-transition probabilities. Thus, the expected
value of state s is described as follows:

(3.8) V(s) =E.[Gy | Sn = 5], VseS

We can similarly decompose this relation into the immediate and future discounted
reward values, and introducing our stochastic transition matrix @, (s) and proba-
bility distribution 7 on permissible actions at state s.

(3.9) V7(s) = Z m(s,a) -r(s,a)+ - Z Qn(s) - VT (s

a€Dy(s) s'eS

The above (Eq. represents the state-value function form of the Bellman Equa-
tion (Bellman, |1957)), which specifies that the total expected reward for a decision
process, given a starting state s € S, is equal to the immediate reward incurred
upon taking an initial action plus the sum of the discounted future rewards incurred
thereafter. Let us now consider a finite case where the system proceeds from state
s until a terminal state sy, occurring at time N. When we consider an N-stage
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sequence of actions, we can simplify and express the state-value function as follows:
N—1
(3.10) V7™ (s) =E] Z ro(s,a) +gn (sn)|, s€S,
k=n
The above represents the conditional expectation of the total reward in the period
[n, N], given we begin in state s and follow the actions prescribed by .

We can express the value of actions at a state in a similar manner to the value
of states by further decomposing Equation [3.9| and considering all possible states s’
to transition to given we take action a € D, (s). Conversely, the state-value form
of this relation (Equation considers to expected value over all possible actions
we can take from a given state. This relation, termed as the action-value function,
can be expressed as follows:

(311) Uﬂ'(s’a) = r(s,a) +7- Z QS’S/(S,G) ’ Z W(Slva/) : Uﬂ-(sva’)

s’esS a’ €D, (s")

3.3.2. Markov Decision Process Policies.

We now introduce the concept of a MDP policy, denoted by 7 € II, and not to
be confused with the often similarly-notated stationary distribution of a Markov
chain. A policy can be viewed as a set of decision rules that is used to determine
which action to take for any given system history and any given observation period.
Policies can be constructed as a set of decision functions f,, € F,, to map states to
actions based on the agent’s optimization objective. Typically, it is the goal of the
agent to find a policy that takes a stochastic system through a series of states (via
actions) that maximizes value, as we have seen in Equation ?7.

In essence, a policy forms a probability distribution on actions. To see this, we
will define an arbitrary policy © = {fo, f1,...fn} € II, and let H, = I'™"1 x §
be the set of a system’s history up to time n, where Hy = S. Then, for any
n > 0 we have h,, = (so,a0, 51,01, ...Gn—1,Sn) € Hu,mn(f($n) | hn), which forms
the probability distribution on the set of actions A(s,). In other words, if system
history h,, occurs at time n, then the actions are prescribed according to policy
Tn(f(sn)|hn). Given a system’s history, policies can exhibit a variety of charac-
teristics. For instance, we have a Markov policy if 7, (f(sp)|hn) = mn(f(sn)|sn), a
stationary policy if mp,(f(sn)|sn) = mo(f(s0)|sn) Vn € N, s € S, and a deterministic
policy if m,(f(sn)|sn) = 1 Vn € N,s € S. Typically, it is the objective to derive
a preferable deterministic policy, which tells the agent to take a certain action a
when at a state s. Herein, we make the distinction that all reference to policies is in
the context of deterministic policies, and thus rid ourselves of denoting 7 with re-
spect decisions functions and states (7(s, f(s)) in favour of the commonly-adopted
notation with respect to states and deterministically-selected actions (7 (s,a)).

3.3.3. Optimal Policies.

Let us now revisit the concept of state- and action-value function in the context of
Bellman’s Principle of Optimally Bellman, 1957, which proposes that an optimal
(in terms of maximal value) sequence of actions will yield a solution to a MDP
wherein whichever initial state and action are selected, the actions taken from the
resulting state will constitute an optimal sequence. This principle forms the general
objective for MDPs; to derive the sequential set of states and actions (prescribed by
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a policy 7) that produce the maximum expected reward for a given period. Such
a policy is termed as an optimal policy, and is denoted as 7*. If an optimal policy
7* is adopted, the state-value function (denoted in this context as V*(s)) will be

optimized in regard to expected reward return for all non-terminal states:

(3.12) V*(s) = max VT(s) VseS

Similarly, the optimal action-value function U*(s), under optimal policy 7*, will
satisfy:
(3.13) U*(s,a) = maﬁcvﬂ(s) Vse S,ac A

TE
When we consider all possible actions a € A available at state s, picking the action
that maximizes our expected future return will thereby maximize U*(s). As such,
equation can be expressed as:
(3.14) V*(s) = maxU*(s,a) Vse S

acA

Decomposing these relations further, we can express the concept of optimality in a
step-wise manner. For a policy to be optimal, it must prescribe an optimal action
upon arriving at each state throughout the simulated period. As such, we can
express the optimal state-value as follows:

* = . 7 . * 4
(3.15) V*(s) = max [r(s,a) +v Z Qs (s,a) - V*(s")| VselS
s'eS
and, for a finite MDP over period [n, N], can be expressed alternatively as:
N—1
(3.16) V*(s) = maxE™ Z Tnt1(s,a) + gn (sN)] Vs € S,
n=0

Next, the optimal action-value can be expressed as:

(3.17)  U*(s,a) =r(s,a)+7- Z Qs.s(s,a) - max U*(s',a") VseS,aeA
a’'e
s’eS
To finish our conceptualization of optimal policies, we will reconsider the overall
objective of MDPs; to maximize our expected value for all states of the modelled
system. To do so, an optimal policy 7* must maximize V*(s) over all states. Put
formally:

Definition 3.18. A MDP policy 7* € IIis considered optimal if V™ (s) > V™(s) Vs €
S,m eIl

To ensure a non-trivial exercises, it suffices to prove that such a policy even
exists. To do so, we must first consider the following lemma.

Lemma 3.19. For any pair of optimal policies ©% and 75, V™ (s) = V™2 (s) Vs € S

Proof. The proof for the above lemma simply follows by the definition of optimal
MDP policies. If #} is an optimal policy, it follows that the respective state-value
function V7™ (s) is greater than or equal to the state-value function for all other
policies, including that of optimal policy 73, for all s € S. Similarly, the relation
is implied in the inverse order by definition of optimal policies, i.e. V7™ (s) >
V™i(s) Vs € S. Thus, it is implied that V™1 (s) = V™2 (s) Vse€ S. O
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Theorem 3.20. For any discrete-time Markov decision process, the following will
hold true:
(1) There exists an optimal policy ©* € I, such that V™ (s) > V™(s) Vs€ S
(2) All optimal policies will satisfy the Optimal State-Value Function, wherein
V™ (s)=V*(s) Vse€S
(3) Similarly, all optimal policies will satisfy the Optimal Action-Value Func-
tion, wherein U™ (s,a) = U*(s,a) Vs € S,a€ A

Proof. (Rao and Jelvis, [2022) To prove the above theorem, we first consider the
proof of Lemma Since we have proven that V7™ (s) = V™ (s) Vs € S for any
two optimal policies, it follows that we must establish some deterministic optimal
policy and prove it will satisfy the optimal state-value and optimal action-value
functions. We will consider an arbitrary candidate optimal policy, denoted by 7°.
By definition of optimal action-value, such a policy will prescribe an action a to
take at state s which maximizes U*(s,a). More formally:

7¢(s) = argmaxU™ (s,a) Vse S

a€A

We will also consider the optimal state-value function V*(s) = maxg,ea U*(s,a),
and can thus infer the following relation:

V*(s) =U" (s,7m(s))

As such, the optimal value will be obtained when we take the action prescribed by
7¢, which, by our prior definition, maximizes the action-value U*(s,a). Further,
this relation infers that if we take this optimal action, and subsequently transition
to state s, we can then take an optimal action at state s’ to again achieve the
optimal state-value. This is true for each state that is not terminal. More formally,
this is constructed as follows:

Ve(s)=V"*(s) Vse S

Similar to the proof of Lemma [3.19] the same is true when we consider the inverse
order in steps; i.e. for each step, when we take an actions a prescribed by 7¢, we
will satisfy the optimal action-value function:

Q%(s,a) =Q*(s,a) VseS,acA

The proof is completed by contradiction, where we assume our candidate policy
7¢ is not, in fact, optimal. Under this assumption, there must therefore exist an
alternative policy (say, m%) where at a given state s, V#(s) is greater than V°(s).
Since we have previously established that V¢(s) = V*(s), the definition of the
optimal value function (V*(s) = max,en V™ (s) Vs € S) is contradicted when
VZ(s) > V¢(s). As such, our candidate policy w¢, which achieves the optimal
state-value V¢(s) = V*(s), is, in fact, an optimal policy.

O

3.3.4. Optimal Policy Solutions.

As no closed-form solutions to Markov Decision Process value-optimization prob-
lems exist, one must obtain a solution through recursive algorithmic methods, such
as the dynamic programming approaches described by Bellman (Bellman, |1958)
or Howard (Howard, 1960). The approach described by Bellman is that of a
backwards-induction value-iteration method. Howard takes a somewhat similar
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approach, but instead solves by iteratively updating policies. Various alternatives
exist, as well as modifications and extensions to the value- and policy-iteration
methods; however, we will focus here on these two seminal methods.

The value-iteration method is described as follows (Bellman, [1958; Rao and
Jelvis, |2022)): We will first consider the input as our MDP model: (S, A(s), Q(s, a),r(s,a),g(s))
and our desired output: the state-value function V(s), which will eventually con-
verge to an optimized condition (V *(s)) for all states. The agent begins by specify-
ing an arbitrary outcome of the value function for all states. Typically, this would
be zero, or a low enough value such that a true outcome of the MDP model’s value
function could feasibly exceed it. Next, the agent iterates over all states, for a spec-
ified number of trials or until a convergence tolerance is met, wherein for each state
(iteration) the Bellman optimal state-value equation (Equation is computed.
In other words, the maximal expected reward across all permissible actions is found
for each state during an iteration. As such, the values of V (s) are updated upon
each iteration that yields a higher value (i.e. state-value improvement, otherwise
known as ’greedy’ policy improvement). Eventually, V'(s) will converge to V x (s),
observed when a tolerance threshold for the change in value updates is reached.
The resulting set of actions, which yield the optimal value across all states, thus
comprises the optimal policy 7*.

The policy-iteration method is described as follows (Howard, [1960; Rao and
Jelvis, 2022): We begin with the MDP model as before, but our desired output
is now the optimal policy itself, as opposed to the optimal value function across
states. The agent starts by specifying an arbitrary initial deterministic policy, which
involves estimating the subsequent initial value of each state-value function under
the arbitrary starting policy. In this instance, value is computed by conditioning
on the iterated policy using the relation described in Equation Here we are
not computing the expected reward value at a state across all actions; rather, we
are computing the expected reward value given we take the actions prescribed by
the policy at hand. Policy improvement is achieved when we iterate over states,
where we compute respective action-values U™ (s, a), and update the policy with
the action that achieves the maximum value:

(3.21) U™(s,a) = arg max Z Qs (s) - (r(s,a)+v- V7 (s))
ac s’'eS

Eventually, the policy will converge to the optimal policy 7*; observable when the
policy does not change (update) through successive iterations.

4. FINANCIAL APPLICATIONS OF MDPs

A highly common use of MDPs is for financial applications, as the evolution of
asset prices is reasonably considered to be a stochastic process in itself. The classic
use of a MDP in this context is to maximize the terminal wealth of some portfolio
consisting of both stochastically-evolving and stationary financial assets. One can
model for an optimal portfolio management strategy in regard to periodic rebal-
ancing of assets, asset allocation among classes under specific market conditions,
deployment of capital, and maximizing returns on a risk-adjusted basis (Béuerle
and Rieder, 2011; White, [1993)). Strategies can be derived for both one-period and
infinite cases.
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FIGURE 4. Conceptual example of a simulated asset prince using
the Black-Scholes-Mertion equation.

4.0.1. Modelling Asset Price Fvolution.

The crux of any financial (or, for that matter, any other field) application lies
in modeling and constructing the stochastic nature of the system of interest; e.g.
the future evolution of an asset price. Specifically, this refers to populating the sto-
chastic transition matrix for the context of MDPs. Herein lies the source of most
uncertainty in regard to validity of the MDP outcomes, as these problems are in-
herently difficult to accurately predict due to multitude of seemingly unpredictable
factors that impact financial markets. A modeller can take one of two general cat-
egories of approaches here; i) observation of past behaviour and extrapolation into
future periods, or ii) utilization of established predictive models. For i), one could
presumably observe the price of an asset over a historical period and populate a
stochastic transition matrix, with states being asset prices ranges, accordingly. For
ii), one could employ rely an established model to generate the probability distri-
bution of asset prices changes over discrete time-intervals, where parameters can
be introduced to model price evolutions under specific economic conditions in ac-
cordance with the modeller’s specific objectives. Perhaps the most well-known and
widely-adopted such model is the Black-Scholes-Merton equation, which assumes
an asset price S, will evolve continuously by:

(4.1) d(S,) =S, (u-ds+ o - By)

where i and o are given parameters describing the mean and variance of the asset
price, and B; is Brownian Motion. Discretized over a time-step At, we have:

1
(4.2) Sny1 = Sn - exp ((,u— 3 -02) -At+0-BS>
Described more simply, we have at each discretized time-step:
(4.3) Snt1 = Sy, - (relative change, 1)

A example of the outputs of the Black-Scholes-Merton equation for a stock under
typical market volatility conditions is presented in Figure
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FI1GURE 5. Conceptual example of a multiple correlated simulated
asset princes using the Black-Scholes-Mertion equation.
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FIGURE 6. Conceptual example of a multiple correlated simulated
asset princes using the Black-Scholes-Mertion equation and a pos-
itive drift factor.

One can factor in multicollinearity to more-accurately model the behaviour of
multiple stocks in a portfolio (Figure[5)). Further, one can model asset prices tending
to a certian end price by inclusion of drift, thereby allowing one to investigate port-

folio strategies under specific market conditions (i.e. bull-markets, bear-markets,
or neutral-markets) (Figure [6]).

4.1. Example MDP Application - Portfolio Strategy.

Here, we present a simple example to illustrate the process of developing and
applying a MDP to produce a policy that optimizes the rebalancing strategy of a
financial portfolio. Consider a portfolio consisting of exactly one stock or one bond
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Simulated Stock Prices

0 5 10 15 20 25
Time (days)

FIGURE 7. Simulated example stock price over n=25.

holding at any given time. Assume no arbitrage opportunity, no transaction costs,
and for simplicity, a discount factor v of 1 (i.e. no discounting). Rebalancing will
occur after each trading day, and the rebalancing actions available to the agent
are either convert all holdings to either the stock or the bond. Actions will not
influence the state-transition probabilities, but will influence the rewards incurred.

Now, we must construct out stochastic transition matrix Q,(s). To do so, we
will employ a somewhat trivial method of simulating our relative stock price over
25 trading days using Equation [{.2] with an arbitrary volatility condition. This
will serve as the observational history from which to derive @, (s) by the relative
frequencies of each transition occurrence. To simplify, we round the resulting prices
to the nearest dollar. The states of @, (s) are then implied by each unique price in
the simulated period. Of course, it is noted that we could simply populate Q,(s)
directly from Equation [£.2} however, this would generate a stationary policy solu-
tion. Here, we are interested in having a policy that differs in actions among states;
perhaps a certain price-point of the asset exhibits observable market-force resis-
tance to price changes above or below. Such effects may be captured by observing
the (simulated) price history and assuming the behaviour continues into the future.

The results of the stock price simulation are provided in Figure[7, and the sub-
sequent transition matrix is presented below:

Qn(s) =

Sn So: 100 s1:102 s9:103 s3:104 s4:105 s5:106 s6:107 s7:109
sp 100 0.0 1.00 0.000 0.000 0.000 0.000 0.000 0.000
s1: 102 0.0 0.75 0.250 0.000 0.000 0.000 0.000 0.000
So : 103 0.0 0.00 0.000 0.500 0.500 0.000 0.000 0.000
s3: 104 0.0 0.00 0.000 0.500 0.500 0.000 0.000 0.000
sS4 : 105 0.0 0.00 0.125 0.125 0.500 0.125 0.125 0.000
s5 : 106 0.0 0.00 0.000 0.000 0.000 0.000 1.000 0.000
sg = 107 0.0 0.00 0.000 0.000 0.333 0.000 0.333 0.333
s7: 109 0.0 0.00 0.000 0.000 0.000 0.000 0.500 0.500

Now, we will consider our reward function. First, we assume the agent will incur
a reward of $0.10 for holding a bond for a trading day. If the agent holds the
stock for a trading day, they will incur a reward equal to the subsequent change in
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the stock’s price. The reward matrices, with entries expressed as dollars, for each
action will therefore be as follows.

Tbond(s) =

Sn So:100 s1:102 s9:103 s3:104 s4:105 s5:106 sg:107 s7:109
sp : 100 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
s1: 102 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
s : 103 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
s3: 104 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
54 : 105 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
s5 : 106 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
sg : 107 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
s7: 109 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

rstock(S) =

Sn S0 :100 s1:102 s9:103 s3:104 s4:105 s5:106 sg:107 s7:109
sp : 100 0.0 2.0 3.0 4.0 5.0 6.0 7.0 9.0
s1: 102 —-2.0 0.0 1.0 2.0 3.0 4.0 5.0 7.0
s : 103 -3.0 -1.0 0.0 1.0 2.0 3.0 4.0 6.0
s3: 104 —4.0 -2.0 —-1.0 0.0 1.0 2.0 3.0 5.0
541105 —5.0 -3.0 —2.0 -1.0 0.0 1.0 2.0 4.0
s5 : 106 —6.0 —4.0 -3.0 —-2.0 -1.0 0.0 1.0 3.0
sg : 107 —7.0 -5.0 —4.0 —-3.0 —-2.0 —1.0 0.0 2.0
s7: 109 -9.0 -7.0 —6.0 —5.0 —4.0 -3.0 -2.0 0.0

We now move to find an optimal policy solution. We will assume a short finite

period of n = 25, equal to our price simulation period. From here, we run 5000
Monte-Carlo iterations of the policy iteration algorithm, where the policy is opti-
mized by finding the actions at each state that maximize the action-value function.

The resulting deterministic optimal policy 7 is as follows:

Sn

Action

S0
S1

S9 .
S3 !
Sq

S5

S6 -
S7

: 100
: 102
103
104
105
: 106
107
109

Hold Stock
Hold Bond
Hold Stock
Hold Stock
Hold Bond
Hold Stock
Hold Stock
Hold Bond

Since we have assumed our stock price moves exactly according to the simulated
history, it follows that an optimal action when the price is at the lower bound of
$100 is to hold a stock (i.e. we assume prices only go up from here). Similarly,
the reverse is true when the price is at the upper bounding state of $109; here it
pays to hold a bond, as the stock price can only decrease. Less trivially, the policy
for the remaining interior states prescribes an action that maximizes our expected
reward over the period of n = 25 thereafter. While simple, and with many broad
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assumptions, this illustrative example shows how one can construct and apply a
MDP to optimize a portfolio rebalancing strategy.
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