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Abstract

Chronic Kidney Disease (CKD) is a disease characterized by a progressive loss of kidney
function, and left untreated, will result in renal failure. The prevalence of the disease is
significantly increasing, and as such, early diagnosis and treatment are imperative to assure
effective treatment and to not over-run hospital/dialysis capacity. Machine learning (ML)
techniques offer a contemporary and accurate method for early detection of CKD from
measured patient biomarkers and disease histories. This study applies two ML classifiers
to develop diagnostic models. Extra consideration was given to clinical applicability of the
models, as similar models have not seen widespread adoption. Further, K-Means clustering
was performed on the data to investigate the potential of the method as tool for inference

and subsequent treatment planning.

Introduction

Chronic Kidney Disease (CKD), a condition affecting millions worldwide, is characterized by a
general progressive loss of kidney structure and function (Levey and Coresh, [2012). A significant
increase in the prevalence of the disease since the 1980s has been noted, likely due to an aging
population, increases in diagnostic capabilities that have reduced the occurrence of patients
going undiagnosed, and improvements in treatments that can significantly extend a patients
lifespan (Lewis, 2012; Locatelli et al., 2002). Early detection and intervention is imperative
to slow disease progression, but remains challenging given the current resources available in
typical clinical settings. If treatment is not sufficient in the earlier stages, the disease can
progress to a severe end-stage wherein a patient must complete frequent dialysis treatment,
which can constitute a large expense for both the patient and healthcare system. Recognizing
these shortcoming in the mid-2000s, the United Kingdom’s National Health Service stated a
need for improving methods for identification of at-risk individuals, a screening program, and
measures to reduce progression of the disease starting at the early stages (Lewis, 2012). Further,
recent reform efforts have strongly recommended for community-based and primary care (i.e.
outside of hospitals), such that the financial burden of intensive treatments is reduced, thus
highlighting a need for accessible and robust clinical tools for diagnostics, prognostics, and
therapeutics (Lewis, [2012).

CKD is defined largely in general terms of kindney function impairment due to the heteroge-
neous nature of the condition; the disease can manifest in a variety of expressions and patholo-
gies, and can progress at different rates from patient to patient (Levey and Coresh, [2012). In
a more clinically-formal sense, CKD is defined as either when the kidneys excretory capacity

is reduced, or simply by the presence of proteinuria (excess protein present in the urine). The



kidney organ acts to filter the bloodstream and remove waste (producing urine), and regulate
various chemicals and bloodstream components such as hormones, electrolytes, and vitamins.
As such, they represent a vital and robust aspect of bodily function, and patients of CKD
are thereby often significantly negatively impacted by their waning function. CKD imposes
various cardiovascular implications to patients, including an increased risk of cardiovascular
events, chronic inflammation leading to accelerated aging at a cellular level, cardiomyopathy,
and vascular calcification (Jankowski and Noels, |2021; Lewis, 2012). Further implications of
the disease can include disruption of circadian rhythm, bone demineralization, gut dysbiosis
and associated digestive issues, hyperparathyroidism, and hyperphosphatemia (Jankowski and
Noels, [2021). At its most severe stage, CKD can cause complete kidney failure, resulting in
the patient either receiving a transplant, or completing dialysis treatment indefinitely, as there
exists no cure for CKD.

The causes of CKD remain variable among populations. In developed nations, the disease is
more commonly associated with aging (with the loss of kidney function being benign), diabetes,
hypertension, obesity, and cardiovascular disease. While these causes are still prevalent in
developing nations, CKD in these populations is relatively more-likely to arise as a secondary
effect from infections, drug exposure, and toxicity (Levey and Coresh, [2012).

Considering the function of the kidney, CKD is often identifiable by distinct compositional
abnormalities in the bloodstream or urine. Some hallmark testable biomarkers of the disease
manifest in the bloodstream as abnormal levels of vitamin D, calcium, and phosphorous, or in the
urine as excess sediment or protein (Levey and Coresh, [2012; Lewis, 2012). Common diagnostic
criteria regarding the excretory capacity is defined by when measurements of the glomerular
filtration rate of the kidney are less than 60/ml on two occasions over a 90-day period; a measure
typically defaulted to by clinicians. (Lewis, 2012)). Regarding the proteinuria, diagnostic criteria
are defined as when a patient exhibits a ratio of urine albumin- (a type of protein present in
the bloodstream) to-creatine greater than 30 mg/mmol, or a urine protein-to-creatine ratio
greater than 50 mg/mmol (Lewis, [2012)). Criteria exist for diagnosing CKD based on various
pathological abnormalities and observable markers of kidney damage, such as polycystic kidney
diseases, renal tubular acidosis, renal masses, and enlarged kidneys (Levey and Coresh, 2012).
Some more-recent machine learning-based diagnostic techniques have shown promising results
in non-clinical, but often require wide arrays of variables to be present as mandatory features
in the predictive diagnostic models (Sanmarchi et al., 2023)).

Similar to diagnostic methods, prognosis of the disease has undergone significant reforms

in the mid-2000s CKD used to be described by a 5-stage scale developed by the US National



Kidney Foundation Kidney Disease Outcomes Quality Initiative (NKF-KDOQI), with each
stage pertaining to a degree of glomerular filtration rate impairment (Lewis, [2012]). At the
least-sever end of the spectrum; Stage 1 is describes the presence of proteinuria and /or abnormal
kidney anatomy. Conversely, Stage 5 describes end-stage renal disease (i.e. renal failure) (Lewis,
2012). Two clinically-significant shortcomings to this classification scale prompted inclusion of
additional considerations in the diagnostic criteria. Most notably, there was no consideration as
to the cause of the patient’s CKD (i.e the patient disease history). Further, the previous scale
was based upon a binary indicator of proteinuria, as opposed to a more-continuous indicators.
The cause of CKD and a 3-level scale of proteinuria severity were consequently introduced into
the accepted clinical diagnostic standards, thereby representing a more-robust set of biomarkers
for which to base diagnoses on (Lewis, 2012). Recent advances in ML/AI techniques (e.g.
decision trees) have been applied in research to improve prognosis methods and therapeutic
treatment regimes, but similar to the diagnostic methods, have not seen widespread adoption
in clinical settings (Sanmarchi et al., |2023]).

With the recent advents of machine learning (ML) and artificial intelligence (AI), much re-
search has been focused on applying these techniques in diagnostic, prognostic, and treatment
contexts for various medical conditions, including CKD. In the context of CKD, prognosis-
related research typically involves regression-based methods to predict disease severity and pro-
gression, whereas therapeutic research may employ stochastic Markov decision process models
to optimize treatment regimes (Sanmarchi et al.,[2023). The majority of the research is focused
on classification-based approaches to diagnosis; the most popular methods being artificial neural
networks, tree algorithms, logistic regression, and support vector machines (Sanmarchi et al.,
2023)). Utilization of clustering-based analysis methods are relatively sparse throughout the
existing literature. Commonly used predictor variables in the CKD diagnostic studies include
blood pressure, blood hemoglobin, pus cell presence, blood glucose, age, serum creatine, and red
blood cell count, patient diabetes, specific gravity of urine, and patient cardiovascular disease,
among others (Hossain et al., 2022; Sanmarchi et al., 2023)). In the context of assessing risk of
CKD development, the important and widely-adopted variables throughout the literature con-
sist of blood pressure, age, sex, cardiovascular disease, diabetes, and various blood and urine
abnormalities (Sanmarchi et al., 2023)). However, feature selection can be challenging in some
instances, as certain feature selection methods may perform adequately (Hossain et al., 2022).

Despite the influx of novel research on the topic, a highly limited amount of models will
actually see clinical use; in their review, Sanmarchi et al., |2023 noted only one model (a lasso

regression) that was applied in a clinical setting, indicating either a lack of consideration for



applicability in model-development, or simply that the clinical settings have not yet had ample
time to properly test and adopt these recent advancements into practice. Major limitations
of current ML/AI diagnostic methods are that the majority of studies do not explicitly con-
sider daily use and clinical integration of these models, particularly regarding reliance on high-
dimensional (and therefore not always available) data and a lack interpretability in complex
models (Sanmarchi et al., [2023). As such, there is an apparent need for predictive diagnostic

models that can perform sufficiently given the following considerations:

e High-accuracy of detection

e Low amount of required variables (low amount of patient testing required)

Applicable and easy to use in clinical settings

Ability to draw inference

Robustness of diagnostic capability (able to diagnose early, or even identify high-risk

patients)

To address these considerations, this study attempts to develop a simple, yet accurate classi-
fication model that has low dimensions and can also serve as an inferential tool. Here, a dataset
(Soundarapandian et al., 2015) comprising of 250 early-stage CKD patients and 150 healthy
control patients is adopted to develop the predictive diagnostic models. The diagnostic models
are assessed in terms of accuracy, interpretability, dimensionality, and versatility. Further, a
clustering-based analysis is completed to investigate the potential for the method as a tool for
inference and potential identification of patient sub-groups. Clustering analysis and patient
grouping may be useful in the context of disease prognosis and for developing more-targeted

therapeutic treatment regimes. The results of this study are compared to its contemporaries.

1 Methods

The general methodological framework utilized in this study contains four steps; data explo-
ration, clustering analysis, logistic regression classification, and support vector machine (SVM)
classification. Appendix [B] contains a comprehensive description of data processing methods,
as well as the final classification and clustering methods.

The dataset utilized for this study is the ”Early stage of Indians Chronic Kidney Disease
(CKD)” dataset (Soundarapandian et al., 2015), available on the UCI Machine Learning Repos-

itory. Data processing was minimal, consisting of outlier screening for removal, binary encoding



of the categorical variables, standardization of the numeric variables, and imputation of missing-
values. Imputation was completed using the Iterative Imputer function from the python package
scikit-learn (Pedregosa et al., [2011); a function that predicts missing or null variables using a
Bayesian ridge regression on the remaining, non-null variables. A principal components analysis
was performed using scikit-learn (Pedregosa et al.,2011)) to provide a reduced-dimension feature
set for model fittings.

K-means clustering was performed to identify potential patient subgroups. This represents a
methodology that has seen limited use and testing in the context of CKD diagnosis and prognosis
(Sanmarchi et al., 2023)). Further, the variable clinical expression and characterization of CKD
(Levey and Coresh, 2012; Lewis, 2012)) suggests there may be distinct subgroups comprised of
patients that exhibit similar diagnostic indicators in certain subsets of biomarkers (e.g. a group
for abnormal blood composition as a diagnostic indicator). The scikit-learn (Pedregosa et al.,
2011) package was used too perform the K-means clustering. The K-means clustering method
attempts to partition the observations into characteristically-distinct subgroups, with minimal
combined in-group variance; letting Cj, € C' denote cluster k € K, the objective of the algorithm

is to minimize the following:

K
minicgnize {kZ:O(VaT(Ck))} (1)
where the solution used in scikit-learn is achieved using Elkan’s algorithm (James et al., [2023;
Pedregosa et al.,2011)). The number of clusters K is pre-defined hyper-parameter. Tuning for K
was achieved through iterative clustering and assessing silhouette score. Additional exploratory
and charting analyses was completed on the data with regard to identifying distinct group
characteristics.

The first classification method performed was logistic regression. The logistic regression

model is fitted using maximum likelihood approach, and maps predictions to binary outcomes

using the logistic function (James et al., [2023):

ePotprX
p(X) = 15 chothix (2)
where X is a predictor variable, and [y and (31 are the fitted regression parameter coefficients.
LASSO feature selection was performed for the logistic regression to reduce dimensions. The
regularization penalty hyper-parameter alpha was tuned via cross-validation. Additional logistic
regression models were fit using the PCA components, features only from the blood-test, and
features only from the urine test.

The second classification method used was support vector machines (SVM). SVMs attempt



to fit a kernel through the feature space that maximizes the separation of features (James et al.,
2023). A linear, polynomial, and radial kernel were fitted, and the respective cross-validation
results were compared to identify the optimal kernel. Similar reduced-dimension models were
also fit using SVM.

Classification models were evaluated by cross validation; specifically sensitivity and speci-
ficity. Sensitivity reflects the estimated probability that a CKD patient would be correctly
identified by the model. In this context, extra emphasis was given to sensitivity, due to the
implications of not identifying early-stage CKD cases and giving a misleading impression to a
patient that they are disease-free (Maxim et al., |2014). Specificity reflects the estimated prob-
ability of correctly identifying a healthy patient. In this instance, the patient would be misled
into believe they have the disease, when in fact they do not, potentially leading to unnecessary

psychological.

2 Results

2.0.1 Data Exploration

A summary of the variables contained within the dataset is provided in Table [I A total of
24 variables were present; 9 from the blood test data (B), 8 from the urine tests (U), and the
remain from the patient history assessment (P).

Kernel density plots of each numeric variable are provided in Figure [I with outliers trun-
cated for visual purposes. A portion of the numeric variables (e.g. su, bu) exhibit some skewness,
as several observations contain abnormally high values, likely indicative of kidney malfunction.

Bar plots are provided for the categorical variables in Figure 2], each of which being a binary
outcome. In general, most patients appear much more likely to exhibit the 'normal’ or "healthy’
outcome for a given categorical variable. As such, it is likely that those with CKD may exhibit
a limited amount of abnormal health indicators (i.e. 1 or 2), providing some additional intuitive
evidence of distinct sub-groups for clustering.

A correlation matrix is provided in Figure [3] Due to similarity in the measured, and thus
redundant parameters in the data, correlation between several features were noted. High-
correlation variables were removed during model fitting using the variance inflation factor with
a cutoff of 5.

The PCA-reduced feature set was derived using three components. While the associate scree
plot (Figure [4]) suggests that a significant portion of the data remains unexplained, the selec-

tion of three components was intentional to drastically reduce dimensions while still retaining



Table 1: Variable Summary

Variable | Desc. Test || Variable | Desc. Test
age age (years) n/a || rbee red blood cell count | B
(mill/cmm)
bp blood pressure | n/a || rbe red blood cells, | U
(mm/Hg) {normal, abnormal}
sg specific gravity (ratio) U pc pus cell {normal, abnor- | U
mal}
al albmin, ordinal numeric | U pcc pus cell clumps | U
{present, not}
su sugar, ordinal numeric | U ba bacteria {present, not} | U
bgr blood glucose random | B htn hypertension {yes, no} | P
(mgs/dl)
bu blood urea (mgs/dl) B dm diabetes mellitus {yes, | P
no}
sc serum creatinine | B cad coronary artery disease | P
(mgs/dl) {ves, no}
sod sodium (mEq/L) B appet appetite {good, poor} P
pot potassium (mEq/L) B pe pedal edema {yes, no} | P
hemo hemoglobin (g) B ane anemia {yes, no} P
pev packed cell volume B class CKD {ckd, not ckd} n/a
wbcc white blood cell count | B
(cells/cumm)
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Figure 1: Kernel density plots of numeric CKD variables
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Figure 3: Correlation matrix for numeric CKD variables




adequate validation performance.
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Figure 4: Scree plot of principal component analysis of CKD data

2.0.2 Clustering

Clustering was ultimately completed on the non-transformed data; this was done to preserve the
original feature variance and inter-relationships, and with the intention of finding groups that
exhibit extreme or outlying observations in similar variables. Clustering was also performed
on standardized and PCA-transformed data, but the resulting groups were not as objectively
distinct in regard to CKD classification. Conversely, using the non-transformed data would
always produce a cluster containing all of the healthy patients and some CKD patients, with
the remaining clusters containing only CKD patients.

The number of clusters (K) was tuned on the basis of silhouette score, and the results
are provided in Table While 2 clusters contained the highest score, K = 4 clusters was
ultimately selected, as 2 clusters provides only a basic classification-type segmentation of the
data. Adopting 4 clusters was completed in attempts to describe additional sub-groups among
CKD patients, and resulted in success isolation of healthy patients from 3 clusters of CKD

patients (Figure [5)).

Table 2: Tuning results based of silhouette score for K-Means clustering

Num. clusters (K) | Silhouette score
2 0.44
3 0.39
4 0.41
5 0.38
6 0.36
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CKD Rates by Cluster
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Figure 5: CKD rates by cluster

The resulting clusters, plotted against their respective principal components with trans-
formed cluster centroids, are provided in Figure @ Clusters 4 (containing all the healthy pa-
tients) appears densely concentrated and highly similar. The same is true for cluster 2, but
to a lesser extent. Clusters 1 and 3 appear to have captured two groups with higher in-group
variability, but with distinct contributions to the overall variance.

Cluster statistics are presented in Table [3|for the categorical variables, and in Table [4] for the
numeric variables. From this, it is noted that cluster 3 patients exhibit fewer disease indicators
for some urine tests variables (i.e. rbc and pc), exhibit a higher relative proportion of patient
history indicators (specifically htn, ane, and pe), and show distinct abnormalities in al, bu,
hemo, sc, and pcv. Categorical outcomes between clusters 1 and 2 are relatively similar, but
show some unique characteristics within their respective numeric variables. Cluster 1 patients
tend to exhibit very high levels of su, bgr, and wbcc., and are the oldest on average. Cluster
2 patients exhibit lower relative blood pressure (bp) and are the youngest, on average, among
CKD patients. Additional plotting for each variable by cluster is available in Appendix [A] for

reference.

Table 3: Proportion of ’1’ outcomes € {1,0} of each categorical variable by cluster

Cluster # | class | rbc pc pcc | ba htn | dm cad | appet | pe ane
1 1 0.74 | 0.67 | 0.24 | 0.09 | 0.7 | 0.83 | 0.26 | 0.33 | 0.22 | 0.17
2 1 0.85 | 0.70 | 0.20 | 0.09 | 0.58 | 0.48 | 0.10 | 0.33 | 0.29 | 0.18
3 1 0.46 | 0.39 | 0.17 | 0.15 | 0.83 | 0.66 | 0.22 0.44 | 0.54 | 0.66
4 0.19 | 0.98 | 0.99 0 | 0.01| 0.04 | 0.06 0 0.04 | 0.04 | 0.01
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K-Means clusters and PCA components of CKD data
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Table 4: Average values of each numeric variable by cluster (notable values bolded)

Cluster age bp Sg al su bgr bu
1 61.17 | 83.99 | 1.01 | 1.91 2.48 | 305.37 | 50.72
2 54.39 | 76.4 | 1.01 | 1.59 0.17 140.38 63.33
3 55.71 | 85.18 | 1.01 | 2.38 0.73 161.25 | 148.09
4 4579 | 72.38 | 1.02 | 0.17 0.06 112.46 32.22
Cluster sc sod pot | hemo pcv whce rbee
1 2.33 | 134.86 | 4.22 | 11.72 | 36.07 | 9968.6 4.39
2 2.71 | 136.32 | 4.4 | 10.92 | 34.28 | 9094.31 4.31
3 10.38 | 130.48 | 4.9 | 8.21 | 25.73 | 8471.54 3.44
4 1.04 | 141.13 | 4.29 | 14.82 | 45.51 | 7676.05 5.31

2.0.3 Logistic Regression

Logistic regression classification performance was strong across all model variations. Cross
validation results are presented in[5] For the 'baseline’ full model, with manual feature selection,
a sensitivity rate of 99% was achieved. This was improved upon with the LASSO-selected
features, PCA components, and blood test features, wherein a sensitivity rate of 100% was
achieved; however, this came with the cost of decrease specificity for each. A specificity rate of
71.8, seen in the blood test, is likely not acceptable for clinical settings. The urine test feature

model achieved a sensitivity rate of 98% and a specificity of 90%.

Table 5: Logistic regression classification model cross validation results

Model | # Params. | Sensitivity (%) | Specificity (%) | Missclass Rate (%)
Baseline 12 99.0 98.2 1.3
LASSO 11 100 93.3 2.5

PCA 3 100 77.8 10.1

Blood test 9 100 71.8 13.8
Urine test 8 98.0 90.0 5.0

Through the hyperparameter tuning, the LASSO feature selection was able to achieve di-
mensions of 11 without a reduction in sensitivity; the results of which are provided in Figure
Dimensionality could be further reduced, but at the cost of additional contextutally-problematic

false negative results.

2.0.4 SVM Classification

The support vector machine classification achieved similarly-accurate results (Table @ The
"baseline’ full model, using all available features achieved both high sensitivity and specificity
rates, at 99% and 100%, respectively. These results were not improved upon by adopting either
a radial or polynomial kernel, with the polynomial kernel slightly reducing performance. The
highest sensitivity rate was observed in the model utilizing the PCA components, suggesting

that the transformation preserved the variance structure in such a way that linear separability
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Figure 7: Cross-validation results of LASSO hyperparameter tuning trials
was successfully retained, and even somewhat improved. Compared to the logistic regression
models, the blood test feature model performed worse regarding sensitivity (87.1%), but much

better regarding specificity (95.3%). The urine test feature models achieved higher sensitivity

and specificity performance relative to the corresponding logistic regression classification model.

Table 6: Support vector machine classification model cross validation results

Model # Params. | Sensitivity (%) | Specificity (%) | Missclass Rate (%)
Baseline 24 99.0 100 0.6
LASSO 11 99.0 98.2 1.3

PCA 3 100 98.2 0.6

Blood test 9 87.1 95.3 10.7
Urine test 8 98.1 96.4 2.5

3 Discussion

The clustering analysis performed in this study represents a relatively underutilized method
in the context of CKD prognosis and diagnosis. Through the K-Means clustering, 4 distinct
patient sub-groups were observed; 3 of which contained only CKD patients. This suggests that
K-Means may also perform well as a classification method. From the resulting clusters, cluster
1 is characterized by an older cohort of patients with relatively high blood-sugar (reflected by
bu and bgr) and who are more-likely diabetic (dm). Cluster 2 is characterized by a younger
cohort of patients that are unlikely to have coronary artery disease, high blood pressure, or
high blood sugar (i.e. the biomarkers more-so resemble that of a healthy patient), but who still
have CKD. This represented the largest cluster of the three CKD-patient clusters. Cluster 3
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is characterized by patients with significant abnormalities in urine composition (e.g. al) and
who were more likely to have either anemia or pedal edema. The inter-relation of variables
that yield abnormal values within clusters warrants further analysis, as there is potential to
concretely identify patient groups with specific causes and specific manifestations of CKD. As
such, treatment regimes could be tailored to best address a patient needs; e.g. to address the
diabetic related issues common amongst cluster 1 patients.

The classification exercises in this study illustrates that theses methods can provide robust
and accurate diagnostic models for early-stage CKD. For all but one classifier model and feature
selection method, the sensitivity rate was above 98.1%. This suggests that if one of these
models were to be adopted, CKD would go undetected in no more than approximately 1.8%
of patients with early-stages of the disease. The outlying model in regards to sensitivity was
the blood test SVM classifier, which achieved only 87.1%. The prediction accuracy achieved in
all models this study is highly comparable to other diagnostic screening tests (Maxim et al.,
2014)), and thus, can likely be considered at clinically-acceptable levels. Further, results were
relatively in line with contemporary ML/AI diagnostic models for CKD (Akben, [2018; Hossain
et al.,|2022); for instance Akben, |2018, using K-Nearest Neighbors classification, achieved miss-
classification rates of 2.2% and 6.7% while using urine test features only and blood test features
only, respectively.

The models that performed best overall were the baseline models (both logistic and SVM),
the LASSO models, and the SVM PCA model. Regarding applicability in a clinical setting,
the SVM model using the LASSO-selected feature set is likely the most relevant due to the
lower dimensions relative to the prediction accuracy. As such, the SVM model, which achieves
sensitivity and specificity rates in line with other clinically-accepted diagnostic tests (Maxim
et al., 2014) could therefore be implemented as a screening tool for patients that may receive
routine blood and urine tests. Further, it was demonstrated that one could run the screening
using only one of the tests (for instance, if only one was available), while still retaining high
diagnostic accuracy.

While the SVM models achieved favourable cross validation results, the models themselves
lack an avenue for further inference. In the case of the logistic model, inference can be achieved
by review of the resulting coefficients and p-vales. For instance, in the LASSO logistic model,
the htn coefficient of 3.35 suggests that patients with hypertension are approximately 28.5 times
more likely (based on the log-odds) to have early-stage CKD than those without. Conversely,
the SVM model offers no such avenue for similar inference. Further, one can assess the im-

portance of biomarkers in terms of predictive value. In this instance, specific gravity, age,
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diabetes, hypertension, red blood cell count, and urine albumin were among the most-relevant
diagnostic predictors, which is largely consistent with the relevant literature (Hossain et al.,
2022; Sanmarchi et al., 2023]).

The methods performed in this study demonstrate the effectiveness and value of machine
learning techniques in medical fields. Unique inference can be gained through clustering, as well
as through review of logistic regression model fittings. The classification exercise illustrates how
simple ML techniques can be used to develop highly accurate, and therefore clinically-relevant,
diagnostic models. As such, it is likely that these tools will see an increase in clinical adoption

in the near-future.
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Figure 8: K-Means clusters and PCA components
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Figure 9:

K-Means clusters and PCA components of CKD data
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B Appendix B: Jupyter Notebook - Data processing, figures,

classification, and clustering
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jtweedie  CKD_ 780final

December 12, 2023

John Tweedie, SN:400550023, 2023-12-12, STATS 780 Final Report

[293] : import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# from mpl_toolkits.mplot3d tmport Ares3D
import seaborn as sns
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.impute import KNNImputer
from sklearn.metrics import accuracy_score, mean_squared_error, rand_score,
~8ilhouette_samples, silhouette_score
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.decomposition import PCA, TruncatedSVD, FactorAnalysis
import statsmodels.api as sm
from statsmodels.tools import add_constant
from statsmodels.stats.outliers_influence import variance_inflation_factor
import warnings
warnings.filterwarnings('ignore')

Chronic_ Kidney_Disease - Data info:

https://www.researchgate.net /publication/328213160_ Early_Stage_ Chronic_ Kidney_ Disease_ Diagnosis_by_

age - age {numeric}

bp -  blood pressure {numeric}

sg - specific gravity {1.005,1.010,1.015,1.020,1.025}
al - albumin {0,1,2,3,4,5} *x*x*

su - sugar {0,1,2,3,4,5} *x*x

rbc - red blood cells {normal,abnormal}
pc - pus cell {normal,abnormal}

pcc -  pus cell clumps {normal,abnormal}
ba - bacteria {normal,abnormal}

bgr -  blood glucose random {numeric}
bu - blood urea {numeric}

sc -  serum creatinine {numeric}

sod -  sodium {numeric}

pot - potassium {numeric}

hemo -  hemoglobin {numeric}



pcv -  packed cell volume

wbcc - white blood cell count {numeric}
rbcc - red blood cell count {numeric}
htn -  hypertension {yes,no}

dm - diabetes mellitus {yes,no}

cad - coronary artery disease {yes,no}
appet - appetite {good,poor}

pe - pedal edema {yes,no}

ane - anemia {yes,no}

class - class {ckd,notckd}

1 Data Processing

[294]: columns =
~['age','bp','sg','al','su','rbc', " 'pc', 'pcc','ba’', 'bgr','bu','sc', 'sod’,
(]
~'pot', 'hemo', 'pcv', 'wbcc', 'rbec', 'htn','dm','cad’, 'appet','pe', 'ane', 'class']

numeric_cols = ['age','bp','sg','al','su','bgr','bu','sc',  'sod’,

'pot', 'hemo', 'pcv', 'wbcc', 'rbec']
blood_cols = ['bgr', 'bu', 'sc', 'sod', 'pot', 'hemo', 'pcv', 'rbcc', 'wbcc']
urine_cols = ['sg', 'al', 'su', 'al', 'rbc', 'pc', 'pcc', 'ba'l

cat_cols = [cat_col for cat_col in columns if cat_col not in numeric_cols]

[295]: df = pd.read_csv(r'chronic_kidney_disease.csv', header=None, names=columns)
df [numeric_cols] = df [numeric_cols].apply(pd.to_numeric, errors='coerce')

[296] : # data clean-up
df = df.replace('?', np.nan)
df = df.replace('\tno', 'no')
df = df.replace('\tyes', 'yes')
df = df.replace(' yes', 'yes')

[297]: # KDE plots to view distributions of data

# we will check for outliers here

sns.set_palette('Pastell’')

fig, axs = plt.subplots(4, 4, figsize=(15, 12))

axs = axs.flatten()

for i, col in enumerate(df [numeric_cols].columns):
sns.kdeplot(df [col], ax=axs[i], £ill=True)

plt.tight_layout ()

fig.delaxes(axs[-2])

fig.delaxes(axs[-1])



[298] :

0.025

# Categorical data - bar plots
sns.set_palette('Pastell')
fig, axs = plt.subplots(3, 4, figsize=(15, 12))
= axs.flatten()
i, col in enumerate(df [cat_cols].columns):
df_plot = pd.DataFrame(data=df [col] .value_counts(), columns=[col])

axs
for

plt
fig

fig.

sns.barplot (df_plot, x=df_plot.index, y=col, ax=axs[i], errorbar=None)

axs[i] .set_ylabel('count')
axs[i] .set_xlabel('"')
axs[i] .set_title(col)

.tight_layout ()
.delaxes(axs[-2])

delaxes(axs[-1])
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[299] :

[300] :
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# Outlier removal from kde
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and scatter plots
df .drop(df ['pot'] .nlargest(2) .index) # remove wvisual pot outliers
df .drop(df['sc'] .nlargest(2) .index) # remove visual sc outliers

# correlation matriz of all wvariables
plt.figure(figsize=(12, 10))
sns.heatmap (df [numeric_cols].corr(), annot=True,

ax = plt.gca()
grad = ax.collections[0].colorbar
grad.set_label("Pearson Correlation", rotation=270)
plt.tight_layout ()

cmap=
fmt=".2f",
linewidths=.01)

coolwarm",
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1.1 Data Processing - Categorical Data Encoding

[301]: | # exzplicitly specifying the categorical enconding, rather than automatically,
assigning 1/0
# should help with making interpretation easier later on

# creating dictionary to specify what is a '1' or 'O’
cat_dict = {'normal':1, 'abnormal':0, 'present':1l, 'notpresent':0,
'yes':1, 'mo':0, 'poor':1l, 'good':0, 'ckd':1, 'motckd':0}

# replace categorical values using the dictionary
df [cat_cols] = df[cat_cols].replace(cat_dict)

# convert to numeric values
df [cat_cols] = df[cat_cols].apply(pd.to_numeric, errors='coerce')



1.2 Data Processing - Imputation of Missing Values
1.2.1 Imputation by K-Nearest Neighbors for Numeric Variables

o Imputing missing numeric variables
o https://scikit-learn.org/stable/modules/impute.html

[302] : imputer = KNNImputer (n_neighbors=9, weights="uniform")
df_imp_num = pd.DataFrame(imputer.fit_transform(df [numeric_cols]),
«columns=numeric_cols)

1.2.2 Iterative Imputation for categorical variables

o Using SKlearn’s iterative imputer
— performs a multiple regression for each columns with missing data to predict missing
values, essentially logit

[303]: from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer

[304] : imputer = IterativeImputer(max_iter=10, random_state=13)
df_imp_cat = pd.DataFrame(np.round(imputer.fit_transform(df)), columns=df.
«columns)
df_imp_cat = df_imp_cat[cat_cols]

[305]: df = pd.concat([df_imp_num, df_imp_cat], axis=1)

Data is now appropriately imputed and fully populated - ready for modelling

1.3 Principal Components Analysis

[306] : numeric_vars = ['age', 'bp','sg','al','su','bgr', ' 'bu’,
'sc','sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbec']

scaler = StandardScaler()
# scale the numeric data and load into dataframes
df_scaled = scaler.fit_transform(df [numeric_vars]) # scale numeric only

n_pca_comps = 14
pca = PCA(n_components=n_pca_comps)
pca_fit = pca.fit_transform(df_scaled)

[307]: pca_cols = ['PC' + str(i) for i in range(l, 15)]
df _pca = pd.DataFrame(pca_fit, index=df.index, columns=pca_cols)

[308]: # Generating a cumulative scree plot
fig , ax = plt.subplots(figsize=(8,5))
prop_var_exp = pca.explained_variance_ratio_



plt.plot([i for i in range(l, 15)], np.cumsum(prop_var_exp), '-.',,
~label='Cumulative')

plt.xlabel('Principal Component')

plt.ylabel('Prop. Variance Explained')

plt.title('PCA Scree Plot')

plt.legend ()

plt.show()
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[309]: n_pca_comps = 3 # selecting 3 components
pca = PCA(n_components=n_pca_comps)
pca_fit = pca.fit_transform(df_scaled)
pca_cols = ['PC' + str(i) for i in range(l, n_pca_comps+1)]
df _pca = pd.DataFrame(pca_fit, index=df.index, columns=pca_cols)

1.4 Clustering

[310]: # get data - standardized + encoded
df _cluster = pd.concat([(pd.DataFrame(df_scaled, index=df.index,,
<columns=numeric_vars)),
df [cat_cols + ['class']]], axis=1)




[311]:

[312]:

[313]:

for n_km_clusters in range(2,7):
km_cluster = KMeans(n_clusters=n_km_clusters, random_state=13, n_init=10)
km_cluster. fit (df_cluster)

# km_cluster. fit(df)

km_cluster.fit(df_pca)

km_labels = km_cluster.labels_ # training set labels

print('# clusters: ', n_km_clusters,

' Sil. Score: ', silhouette_score(df_pca, km_labels) .round(2))

H*

# clusters: 2 Sil. Score: 0.44
# clusters: 3 ©Sil. Score: 0.39
# clusters: 4 Sil. Score: 0.41
# clusters: b5 Sil. Score: 0.38
# clusters: 6 Sil. Score: 0.36

# 2 clusters has the highest silhouette score
km_cluster = KMeans(n_clusters=4, random_state=13, n_init=10)

# km_cluster. fit (df_ cluster)
# km_cluster. fit (df)
km_cluster.fit(df_pca)

km_labels = km_cluster.labels_
km_centers = km_cluster.cluster_centers_

# find centroids of PCA components by cluster for plotting purposes (not true,
scentroid of cluster)

df_pcal'cluster']=km_labels

cl_center = np.mean(df_pca.loc[df_pcal'cluster']==0], axis=0)

c2_center = np.mean(df_pca.loc[df_pcal'cluster']==1], axis=0)

c3_center = np.mean(df_pca.loc[df_pcal'cluster']==2], axis=0)

c4_center = np.mean(df_pca.loc[df_pcal'cluster']==3], axis=0)

# plotting clusters by PCA
fig, axs = plt.subplots(3, 1, figsize=(8, 12))
axs = axs.flatten()

axs[0] .scatter(df_pcal['PC1'], df_pcal'PC2'],
c=km_labels, cmap='Pastel2')

# axs[0].scatter(km centers[:,0], km centers[:,1], c='red', label='centroids')

axs[0] .scatter(cl_center['PC1'], cl_center['PC2'], c='green', label='Cluster 1,
~Centroid')

axs[0] .scatter(c2_center['PC1'], c2_center['PC2'], c='steelblue',
~label="'Cluster 2 Centroid')

axs[0] .scatter(c3_center['PC1'], c3_center['PC2'], c='goldenrod',
«~label="'Cluster 3 Centroid')



axs[0] .scatter(c4_center['PC1'], c4_center['PC2'], c='dimgrey', label='Cluster,,

<4 Centroid')

axs[0] .set_title('K-Means Clusters of Principal Components')

axs[0] .set_xlabel('PC1')
axs[0] .set_ylabel('PC2')

axs[1] .scatter(df_pcal['PC1'], df_pcal'PC3'],
c=km_labels, cmap='Pastel2')

# axs[1].scatter(km_centers[:,0], km_centers[:,2],

axs[1] .scatter(cl _center['PC1'], cl1 center['PC3'],

~Centroid"')

axs[1] .scatter(c2_center['PC1'], c2 center['PC3'],

~label="'Cluster 2 Centroid')

axs[1] .scatter(c3 center['PC1'], c3 center['PC3'],

~label="'Cluster 3 Centroid')

axs[1] .scatter(c4_center['PC1'], c4_center['PC3'],

4 Centroid')
axs[1] .set_xlabel('PC1')
axs[1] .set_ylabel('PC3')

axs[2] .scatter(df_pcal['PC2'], df_pcal'PC3'],
c=km_labels, cmap='Pastel2')

# azs[2].scatter(km centers[:,1], km centers[:,2],

axs[2] .scatter(cl _center['PC2'], cl1 center['PC3'],

~Centroid"')

axs[2] .scatter(c2 _center['PC2'], c2 center['PC3'],

~label='Cluster 2 Centroid')

axs[2] .scatter(c3 center['PC2'], c3 _center['PC3'],

~label='Cluster 3 Centroid')

axs[2] .scatter(c4_center['PC2'], c4_center['PC3'],

4 Centroid')
axs[2] .set_xlabel('PC2')
axs[2] .set_ylabel('PC3')
plt.legend ()

plt.tight_layout ()

c='red', label='centroids')
c='green', label='Cluster 1,

c='steelblue',
c='goldenrod',

c='dimgrey', label='Cluster

c='red', label='centroids')
c='green', label='Cluster 1,

c='steelblue',
c='goldenrod',

c='dimgrey', label='Clustery



K-Means Clusters of Principal Components

® Cluster 1 Centroid
® Cluster 2 Centroid

Cluster 3 Centroid
® Cluster 4 Centroid
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1.4.1 Additional Plotting by Cluster

o useful for additional exploratory and cluster analysis/inference

[314]: df_clusters = df.copy() # creating a copy for plotting later
df _clusters['cluster_label'] = km_labels

[315]: | # find CKD rates within each cluster, populate a dictionary for plotting

cl _ckd = df.loc[(df clusters['cluster_label'] == 0) &,
< (df _clusters['class']==1)]['class'].count()

c2_ckd = df.loc[(df_clusters['cluster_label'] == 1) &,
«(df _clusters['class']==1)]['class'].count()

c3_ckd = df.loc[(df_clusters['cluster_label'] == 2) &,
< (df _clusters['class']==1)]['class'].count()
c4_ckd = df.loc[(df_clusters['cluster_label'] == 3) &,

< (df __clusters['class']==1)]['class'].count ()

cl_hty = df .loc[(df_clusters['cluster_label']l == 0) &,
«(df _clusters['class']==0)]['class'].count()

c2_hty = df .loc[(df_clusters['cluster_label'] == 1) &,
«(df _clusters['class']==0)]['class'].count()

c3_hty = df .loc[(df_clusters['cluster_label'] == 2) &,
«(df _clusters['class']==0)]['class'].count()

c4_hty = df .loc[(df_clusters['cluster_label']l == 3) &,
< (df _clusters['class']==0)]['class'].count()

clusters = ['Cluster 1','Cluster 2','Cluster 3','Cluster 4']
plot_dict = {'CKD':(cl_ckd, c2_ckd, c3_ckd, c4_ckd),
'Healthy':(cl_hty, c2_hty, c3_hty, c4_hty)}

# clusters = ['Cluster 1', 'Cluster 2']
# plot_dict = {'CKD':(cl_ckd, c2_ckd),
# 'Healthy':(c1_hty, c2_hty)}

[316]:  # bar plot to investigate difference in CKD cases
sns.set_palette('Pastell')

x = np.arange(len(clusters))

width = 0.25

multiplier = 0.5

fig, ax = plt.subplots(layout='constrained')

for attribute, measurement in plot_dict.items():

11



offset = width * multiplier

rects = ax.bar(x + offset, measurement, width, label=attribute)
ax.bar_label(rects, padding=2)

multiplier += 1

ax.set_ylabel('# CKD Cases')
ax.set_title('CKD Rates by Cluster')
ax.set_xticks(x + width, clusters)
ax.legend(loc="'upper left', ncols=2)
plt.show()
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[317]: # create violin plots for each numeric wvariable, grouped by cluster
sns.set_palette('Pastell')
fig, axs = plt.subplots(4, 4, figsize=(18, 15))
axs = axs.flatten()
for i, var in enumerate(numeric_cols):
sns.violinplot(x='cluster_label', y=var, data=df_clusters, ax=axs[i])
axs[i] .set_title('{} by cluster'.format(var))
axs[i] .set_ylabel (var)
axs[i] .set_xticklabels(clusters)
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[318]:

axs[i] .set_xlabel('')

plt.tight_layout ()

fig.delaxes(axs[-2])
fig.delaxes(axs[-1])
plt.show()
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# create bar plots for each categorical wvariable, grouped by cluster

sns.set_palette('Pastell')

fig, axs = plt.subplots(3, 4, figsize=(18, 15))

axs = axs.flatten()
for i, var in enumerate(cat_cols):
var_count
ogroupby(['cluster_label', var]).size() .unstack()

var_count.plot(kind='bar', ax=axs[i])
axs[i] .set_title('{} by cluster'.format(var))
axs[i] .set_ylabel('count"')
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[319]:

axs[i] .set_xticklabels(clusters, rotation=0)

axs[i] .set_xlabel('')
plt.tight_layout ()

fig.delaxes(axs[-1])

plt.show()
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1.4.2 Descriptive Statistics of Clusters

cluster_stats

%'Std'])

cluster_stats =

# cluster_stats =

np.round(cluster_stats, 2)
cluster_stats/[cat_cols]

cluster_stats.to_csv('cluster_stats.csv')
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1.5 Test/Train Segmentation and Data Standardization

[320]: | # re-listing out the predictor variable nmames, and those that are numeric vs..
~categorical

predictors = ['age','bp','sg','al','su','rbc',  'pc',
'pcc','ba', 'bgr','bu','sc','sod', 'pot',
'hemo', 'pcv', 'wbcc', 'rbec', 'htn', 'dm',
'cad', 'appet', 'pe', 'ane']

numeric_vars = ['age','bp','sg','al','su','bgr', 'bu’,
'sc','sod','pot', 'hemo', 'pcv', 'wbcc', 'rbec']

cat_vars = ['rbc', 'pc', 'pcc', 'ba', 'htn',
'"dm', 'cad', 'appet', 'pe', 'ane']

[321]: # Two functions to test/train split and standardize
# can pass through different subsets of wvariables for future feature selection,
»1f necessary

def run_test_train_split(df, predictors):
# function to return test train split from dataframe and predictor subset

X
y

df [predictors]
df[['class']] .astype('int"')

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,,
~random_state=100)

return X_train, X_test, y_train, y_test

def run_standardize(X_train, X_test, numeric_vars, cat_vars):
# function to scale numeric dataframe columns in test and train sets

scaler = StandardScaler()

# scale the numeric data and load into dataframes

X _train_num_scaled = scaler.fit_transform(X_train[numeric_vars]) # scale,
wnumeric only

df _X_train_num_scaled = pd.DataFrame(X_train_num_scaled,
<.columns=numeric_vars, index=X train.index)

X_train = pd.concat([df_X_train_num_scaled, X_train[cat_vars]], axis=1)
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X_test_num_scaled = scaler.transform(X_test[numeric_vars]) # scale numeric,
<only, using fit from train

df_X_test_num_scaled = pd.DataFrame(X_test_num_scaled,
<.columns=numeric_vars, index=X test.index)

X_test = pd.concat([df_X_test_num_scaled, X_test[cat_vars]], axis=1).
~dropna()

X_train = add_constant (X_train)
X_test = add_constant(X_test)

return X_train, X_test

X_train, X_test, y_train, y_test = run_test_train_split(df, predictors)
X_train, X_test = run_standardize(X_train, X_test, numeric_vars, cat_vars)

2 Logistic Regression Classification

[322]: # function to print out model logistic performance (missclassification, AUC,
scross-val...)

def model_performance(model, features):

if 'PC1' in features:

X_test_fs = X_test_pcal[features]
else:

X_test_fs = X_test[features] # feature selected X_test set
y_prob = model.predict(X_test_fs)

try:
y_pred = round(y_prob)
con_mtx = confusion_matrix(y_test, y_pred)
clf_report = classification_report(y_test, y_pred)
except:

con_mtx = confusion_matrix(y_test, y_prob)
clf_report = classification_report(y_test, y_prob)

print ('\nCross Validation Results for Chronic Kidney Disease (+) vs.,
~Healthy (-) Precitions:')

]}

sprint (!
print ('\nTrue positives:', con_mtx[1][1])
print('False positives:', con_mtx[1][0])
print (' True negatives:', con_mtx[0] [0])
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print('False negatives:', con_mtx[0][1])
print('Precision: ', round((con_mtx[1][1]/
o (con_mtx[1] [1]+con_mtx[1]1[0]1)),3)) # ratio of true+ to total predicted
print('Sensitivity: ', round((con_mtx[1][1]/
< (con_mtx[1] [1]+con_mtx[0] [1])),3)) # TP / (TP + FN)
print('Specificity: ', round((con_mtx[0] [0]/
< (con_mtx[0] [0]+con_mtx[1]1[0]1)),3)) # TN / (TN + FP)
print('Accuracy: ', round((con_mtx[1][1]+con_mtx[0] [0])/len(X_test),3))
print('Missclass. Rate: ', round((con_mtx[0] [1]+con_mtx[1][0])/
~len(X_test),3))

print ('\nclf report: \n')
print(clf_report)

Feature Selection - VIF

e Checks for multi-colinearity and avoids singular matrix

[323]: df_vif = pd.DataFrame()
df _vif['Predictor'] = X_train.columns
df vif['VIF'] = [variance_inflation_factor(X_train, i) for i ing,
owrange(len(X_train.columns))]

[324]: |vif_drops = ['hemo', 'pcv', 'const'l # high VIF
X_train = X_train.drop(columns=vif_drops)
X_test = X_test.drop(columns=vif_drops)

[325]: | # Fitting the full initial logisitic classsifier model
clf _1g = sm.Logit(y_train, X_train).fit(method='bfgs')
# Evaluate performance
# model_performance(clf_lg, X_train.columns)

Current function value: 0.002622
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

2.0.1 Feature Selection - Stepwise

[326]: # remove features based on the model fit above
fsi_drops = ['cad', 'pcc', 'pc', 'su',
'ba', 'ane', 'rbc', 'pe', 'sod', 'pot'l # feature selection 1 dropy
<columns
X_train = X_train.drop(columns=fsi_drops)
X_test = X_test.drop(columns=fsl_drops)
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[327]: # Fitting the full initial logisitic classsifier model
clf _1g = sm.Logit(y_train, X_train).fit(method='bfgs')
# print(clf_lg.summary())

Current function value: 0.040994
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

2.0.2 OQOutlier Test - High Leverage Observations

[328]: # find high leverage points
lvg = clf_lg.get_influence() .hat_matrix_diag

[329]: # define cutoff: 'greatly exceeding' (p+1)/n (ISLP, 2023)
cutoff = (len(X_train.columns)+1) / len(lvg)
indexes = np.where(lvg > 13 * cutoff) # we will use 13 times the above, whichy
~detects 4 outliers

[330]: # drop high leverage points from training set
X_train = X_train.drop(X_train.index[indexes])
y_train = y_train.drop(y_train.index[indexes])

2.0.3 Final ‘Baseline’ Logistic Regression Model

[331]: # Fitting the full initial logisitic classsifier model
clf_1g = sm.Logit(y_train, X_train).fit(method='bfgs')
print(clf_lg.summary())

# Evaluate performance
model_performance(clf_lg, X_train.columns)

Current function value: 0.028616
Iterations: 35
Function evaluations: 36
Gradient evaluations: 36
Logit Regression Results

Dep. Variable: class No. Observations: 233
Model: Logit Df Residuals: 221
Method: MLE Df Model: 11
Date: Tue, 12 Dec 2023 Pseudo R-squ.: 0.9576
Time: 20:22:41  Log-Likelihood: -6.6676
converged: False LL-Null: -157.13
Covariance Type: nonrobust LLR p-value: 5.591e-58

coef std err z P>|z| [0.025 0.975]

18



age -4.4795 2.848 -1.573 0.116 -10.062 1.103
bp -0.8134 1.363 -0.597 0.551 -3.484 1.857
sg -6.5028 3.004 -2.164 0.030 -12.392 -0.614
al 3.4466 2.964 1.163 0.245 -2.364 9.257
bgr 1.6918 1.782 0.949 0.342 -1.801 5.184
bu -5.1358 3.636 -1.413 0.158 -12.262 1.990
sc 5.7321 4.074 1.407 0.159 -2.253 13.717
wbcc 1.4997 2.310 0.649 0.516 -3.028 6.027
rbcc -4.4551 3.336 -1.335 0.182 -10.994 2.083
htn 18.6020 192.869 0.096 0.923 -359.414 396.618
dm 19.0840 119.265 0.160 0.873 -214.671 252.839
appet 18.1213 102.232 0.177 0.859 -182.249 218.492

Possibly complete quasi-separation: A fraction 0.76 of observations can be
perfectly predicted. This might indicate that there is complete
quasi-separation. In this case some parameters will not be identified.

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 102
False positives: 1

True negatives: 55
False negatives: 1
Precision: 0.99
Sensitivity: 0.99
Specificity: 0.982
Accuracy: 0.987
Missclass. Rate: 0.013

clf report:
precision recall fl-score support
0.98 0.98 0.98 56
1 0.99 0.99 0.99 103
accuracy 0.99 1569
macro avg 0.99 0.99 0.99 159
weighted avg 0.99 0.99 0.99 159
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[332]:

[333]:

2.1 LASSO Feature Selection for Logit

# fit lasso_model (same as above)
lasso_model = sm.Logit(y_train, X_train)
# print (clf_lg.summary())

# We will perform LASSO regularization to shrink the regression coefficients
# Several tuning parameters (penalty coefficients) will be evaluated to select,
~the best-performing model

# list of all tuning parameters to test, full coefficient shrinkage begins aty,
~0.005
Cs = [4, 3, 2, 1.5, 1, 0.5, 0.25, 0.1, 0.05]

# initialize dataframes

lasso_coefs = pd.DataFrame({'Feature': X_train.columns})
lasso_cv = pd.DataFrame()

lasso_model = sm.Logit(y_train, X_train)

X_test = X_test[X_train.columns]

# i1tterate through tuning paramters, store results in initialized dataframes
for ¢ in Cs:

clf_lasso = lasso_model.fit_regularized(method='11"', L1_wt=1, alpha=(1/c),.
~disp=False) # alpha is the (inverse) penalty term

y_prob = clf_lasso.predict(X_test)

y_pred = round(y_prob)

con_mtx = confusion_matrix(y_test, y_pred)

lasso_coefs['coef_C={}'.format(c)] = clf_lasso.params.values

# calculate cross wvalidation metrics

Precision = round((con_mtx[1][1]/(con_mtx[1][1]+con_mtx[1][0])),3)
Specificity = round((con_mtx[0] [0]/(con_mtx[0] [0]+con_mtx[1][0])),3)
round((con_mtx[1] [1]/(con_mtx[1][1]+con_mtx[0]1[11)),3) # TP /.,

Sensitivity
< (TP + FN)

Accuracy = round((con_mtx[1] [1]+con_mtx[0] [0])/len(X_test),3)

Missclass = round((con_mtx[0] [1]+con_mtx[1] [0])/len(X_test),3)

results_list = [c, con_mtx[1][1], con_mtx[1][0], con_mtx[0][0],
con_mtx[0] [1], Precision, Specificity, Sensitivity,,
<Accuracy, Missclass]

# store cross wvalidation metrics in dataframe

lasso_cv = pd.concat([lasso_cv, pd.DataFrame([results_list])],
~ignore_index=True)
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[334]:

columns=['Tuning Parameter', 'True Positives', 'False Positives', 'True,
~Negatives',
'False Negatives', 'Precision', 'Specificity', 'Semnsitivity',,
<'Accuracy', 'Missclass Rate']
lasso_cv = lasso_cv.rename(columns=dict(zip(lasso_cv.columns, columns)))
lasso_coefs = lasso_coefs.set_index('Feature')

sns.set_palette('Pastell')

plt.figure(figsize=(12, 6))

for col, row in lasso_coefs.replace(0, np.nan).iterrows():
plt.plot(row, label=col, linewidth=4, marker='o')

plt.legend(loc="upper left', bbox_to_anchor=(-0.22, 0.9))

axl = plt.gca(Q)

plt.grid(True)

sns.set_palette('Dark2')
ax2 = plt.gca() .twinx()
for col, row in lasso_cv[['Precision', 'Specificity', 'Sensitivity',.
<'"Accuracy']].T.iterrows():
ax2.plot(row, linestyle='dashed', label=col)
plt.legend(loc="upper left', bbox_to_anchor=(-0.22, 0.35))
plt.subplots_adjust(left=0.1, right=0.85, top=0.9, bottom=0.1, wspace=0.
~hspace=0.3)

plt.title('LASSO Hyperparameter Tuning - Cross-Validation Results')
ax2.set_ylabel('Cross validation result (%)')
axl.set_xticklabels(Cs)

axl.set_ylabel('Coefficient parameter estimates')

axl.set_xlabel ('Hyperparameter (alpha) value')

plt.tight_layout ()
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plt.show()
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[335]:  # lasso_cv

Based on the LASSO results, we will employ a coefficient of 1.5 to achieve the best trade-off between
dimensionality and accuracy, and minimizing false negative rate. However, there is no complete
shrinkage of a coefficient without incurring additional false negatives

[336] : lasso_coefs = pd.DataFrame({'Feature': X_train.columns})
lasso_cv = pd.DataFrame()
clf _lasso = lasso_model.fit_regularized(method='11"', L1_wt=1, alpha=(1/1.5),,
wdisp=False) # alpha is the (inverse) penalty term
y_prob = clf_lasso.predict(X_test)
y_pred = round(y_prob)
con_mtx = confusion_matrix(y_test, y_pred)

lasso_coefs['coefficients'] = clf_lasso.params.values

# calculate cross wvalidation metrics

Precision = round((con_mtx[1][1]/(con_mtx[1] [1]+con_mtx[1]1[0])),3)

Specificity = round((con_mtx[0] [0]/(con_mtx[0] [0]+con_mtx[1] [0])),3)

Sensitivity = round((con_mtx[1][1]/(con_mtx[1][1]+con_mtx[0][1]1)),3) # TP / (TP,
o+ FN)

Accuracy = round((con_mtx[1] [1]+con_mtx[0] [0])/len(X_test),3)

Missclass = round((con_mtx[0] [1]+con_mtx[1][0])/len(X_test),3)

results_list = [c, con_mtx[1][1], con_mtx[1][0], con_mtx[0][0],
con_mtx[0] [1], Precision, Specificity, Sensitivity, Accuracy,
~Missclass]

# store cross walidation metrics in dataframe
lasso_cv = pd.concat([lasso_cv, pd.DataFrame([results_list])],
~ignore_index=True)

columns=['Tuning Parameter', 'True Positives', 'False Positives', 'True,
~Negatives',
'False Negatives', 'Precision', 'Specificity', 'Sensitivity', 'Accuracy',y,
«'Missclass Rate']
lasso_cv = lasso_cv.rename(columns=dict(zip(lasso_cv.columns, columns)))

[337] : model_performance(clf_lasso, X_test.columns)
final_model = pd.DataFrame({'Predictor': X_train.columns, 'Coefficient':,
«~clf_lasso.params.values,
'p—value': clf_lasso.pvalues,
'"VIF': [variance_inflation_factor(X_test, i) for i,
~in range(len(X_test.columns))]})
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Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 99
False positives: 4

True negatives: 56
False negatives: O
Precision: 0.961
Sensitivity: 1.0
Specificity: 0.933
Accuracy: 0.975
Missclass. Rate: 0.025

clf report:
precision recall fl-score support
0 0.93 1.00 0.97 56
1 1.00 0.96 0.98 103
accuracy 0.97 159
macro avg 0.97 0.98 0.97 159
weighted avg 0.98 0.97 0.98 159

[338]: final_model # <nvestigate coefficients

[338]: Predictor Coefficient p-value VIF
age age -0.686739 0.120526 1.169383
bp bp 0.000000 NaN 1.243678
sg sg -2.549323 0.000029 1.681317
al al 1.067900 0.080782 1.635674
bgr bgr 0.444929 0.542992 1.337049
bu bu -0.628937 0.610653 2.918202
sc sc 0.751631 0.643957 2.477935
wbcc wbcc 0.568557 0.252254 1.199250
rbcc rbcc -1.223918 0.089333 2.351167
htn htn 3.349687 0.037534 2.948019
dm dm 3.039868 0.049210 2.737267
appet appet 4.199153 0.008284 1.605580
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2.2 Logistic Regression using PCA components

[339]: # prepare test/train sets with PCA data

X_pca_cat = pd.concat([df_pca.drop('cluster', axis=1), df[cat_vars]], axis=1)

y = df[['class']] .astype('int"')

X_train_pca, X_test_pca, y_train, y_test = train_test_split(X_pca_cat, y,.
~test_size=0.4, random_state=100)

[340]: # Fitting the logisitic classsifier model using PCA components and binarys
clf_1g = sm.Logit(y_train, X_train_pca).fit(method='bfgs')
#print (clf_lg.summary())

# Evaluate performance
# model_performance(clf_lg, clf_lg.params.indezx)

Current function value: 0.029428
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

[341]: fsl_drops = ['cad', 'dm', 'htn', 'ba', 'pe', 'ane'l # feature selection 1 drop
<columns
X_train_pca = X_train_pca.drop(columns=fs1_drops)
X_test_pca = X_test_pca.drop(columns=fsl_drops)

[342]: # Fit 2
clf_1lg = sm.Logit(y_train, X_train_pca).fit(method='bfgs"')
#print (clf_lg.summary())

# Evaluate performance
# model_performance(clf lg, X_train_pca.columns)

Current function value: 0.082415
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

[343]: fsl_drops = ['pc', 'pcc', 'appet', 'rbc'l # feature selection 1 drop columns
X_train_pca = X_train_pca.drop(columns=fsl_drops)
X_test_pca = X_test_pca.drop(columns=fsl_drops)

[344]: | # Final PCA fit
clf_1g = sm.Logit(y_train, X_train_pca).fit(method='bfgs')
print(clf_lg.summary())
# Evaluate performance

model_performance(clf_lg, X_train_pca.columns)
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Optimization terminated successfully.
Current function value: 0.277946

Iterations: 16

Function evaluations: 17

Gradient evaluations: 17

Logit Regression Results

Dep. Variable: class No. Observations: 237
Model: Logit Df Residuals: 234
Method: MLE Df Model: 2
Date: Tue, 12 Dec 2023 Pseudo R-squ.: 0.5862
Time: 20:22:42  Log-Likelihood: -65.873
converged: True  LL-Null: -159.17
Covariance Type: nonrobust LLR p-value: 3.021e-41

coef std err z P>|z]| [0.025 0.975]
PC1 1.4412 0.183 7.878 0.000 1.083 1.800
pPC2 0.4245 0.214 1.986 0.047 0.006 0.843
PC3 0.9025 0.246 3.664 0.000 0.420 1.385

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 87
False positives: 16
True negatives: 56
False negatives: O

Precision: 0.845
Sensitivity: 1.0
Specificity: 0.778
Accuracy: 0.899
Missclass. Rate: 0.101
clf report:
precision recall fl-score  support
0 0.78 1.00 0.88 56
1 1.00 0.84 0.92 103
accuracy 0.90 159
macro avg 0.89 0.92 0.90 159
weighted avg 0.92 0.90 0.90 159
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3 Support Vector Machine Classification
[345]: from sklearn import svm

[346]: # reset test/train dataframe
X_train, X_test, y_train, y_test = run_test_train_split(df, predictors)
X_train, X_test = run_standardize(X_train, X_test, numeric_vars, cat_vars)

# fit SVM classifier

clf_svm = svm.SVC(kernel='linear')
clf_svm.fit(X_train, y_train['class'])
clf_svm.predict(X_test)

# cross-valtdation
model_performance(clf_svm, X_test.columns)

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 103
False positives: O

True negatives: 55
False negatives: 1
Precision: 1.0
Sensitivity: 0.99
Specificity: 1.0
Accuracy: 0.994
Missclass. Rate: 0.006

clf report:
precision recall fl-score support
0 1.00 0.98 0.99 56
1 0.99 1.00 1.00 103
accuracy 0.99 159
macro avg 1.00 0.99 0.99 159
weighted avg 0.99 0.99 0.99 1569

The SVM acheives near-perfect classification on the test set. We will test the accuracy of the SVM,
but with reduced dimensions

26



3.0.1 SVM using LASSO-selected features from L.R. model

o we will use the features that remained in the final LASSO logistic regression model to compare
performance

[347]: coefs = final_model.dropna()
coefs = coefs['Coefficient']
fs_cols = coefs.index

[348]: X_train_fsl = X_train[fs_cols]
X test_fsl = X _test[fs_cols]

[349]: clf svm = svm.SVC(kernel='linear')
clf_svm.fit(X_train_fsl, y_train['class'])
clf_svm.predict(X_test_fsl)
model_performance(clf_svm, X_test_fsl.columns)

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 102
False positives: 1

True negatives: 55
False negatives: 1
Precision: 0.99
Sensitivity: 0.99
Specificity: 0.982
Accuracy: 0.987
Missclass. Rate: 0.013

clf report:
precision recall fl-score support
0 0.98 0.98 0.98 56
1 0.99 0.99 0.99 103
accuracy 0.99 159
macro avg 0.99 0.99 0.99 159
weighted avg 0.99 0.99 0.99 159

We have achieved similar, but slightly worse accuracy as the logistic regression with LASSO feature
selection, while using the same set of predictor variables given from the LASSO application
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3.0.2 SVM using PCA

[350]: clf_svm.fit(X_train_pca, y_train['class'])
clf_svm.predict(X_test_pca)
model_performance(clf_svm, X_train_pca.columns)

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 102
False positives: 1

True negatives: 56
False negatives: 0O
Precision: 0.99
Sensitivity: 1.0
Specificity: 0.982
Accuracy: 0.994
Missclass. Rate: 0.006

clf report:
precision recall fl-score support
0 0.98 1.00 0.99 56
1 1.00 0.99 1.00 103
accuracy 0.99 159
macro avg 0.99 1.00 0.99 159
weighted avg 0.99 0.99 0.99 159

[351]: # radial and polynomial models - identical/minimially different predictions

clf_svm = svm.SVC(kernel='rbf')
clf_svm.fit(X_train, y_train['class'])
clf_svm.predict(X_test)
model_performance(clf_svm, X_test.columns)

clf_svm = svm.SVC(kernel='poly')
clf_svm.fit(X_train, y_train['class'])
clf_svm.predict(X_test)
model_performance(clf_svm, X_test.columns)

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:
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True positives: 103
False positives: O
True negatives: 55
False negatives: 1

Precision: 1.0
Sensitivity: 0.99
Specificity: 1.0
Accuracy: 0.994
Missclass. Rate: 0.006
clf report:
precision recall
0 1.00 0.98
1 0.99 1.00
accuracy
macro avg 1.00 0.99
weighted avg 0.99 0.99

fl-score

0.99
1.00

support

56
103

159
159
159

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)

Precitions:

True positives: 103
False positives: O
True negatives: 54
False negatives: 2

Precision: 1.0
Sensitivity: 0.981
Specificity: 1.0
Accuracy: 0.987
Missclass. Rate: 0.013
clf report:
precision recall
1.00 0.96
1 0.98 1.00
accuracy

fl-score

support

56
103

159



macro avg 0.99 0.98 0.99 159
weighted avg 0.99 0.99 0.99 159

4 Blood and Urinalysis-only models

4.0.1 L.R. for blood test only

[352]: X_train_blood = X_train[blood_cols]
X test _blood = X_test[blood cols]

clf _1g = sm.Logit(y_train, X_train_blood).fit(method='bfgs')
# print(clf_lg.summary())

# Evaluate performance
model_performance(clf_lg, X_train_blood.columns)

Current function value: 0.287539
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 81
False positives: 22
True negatives: 56
False negatives: O
Precision: 0.786
Sensitivity: 1.0
Specificity: 0.718
Accuracy: 0.862
Missclass. Rate: 0.138

clf report:
precision recall fl-score support
0.72 1.00 0.84 56
1 1.00 0.79 0.88 103
accuracy 0.86 159
macro avg 0.86 0.89 0.86 159
weighted avg 0.90 0.86 0.86 159
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4.0.2 L.R. for urinalysis only

[353]: X_train_urine = X_train[urine_cols]
X_test_urine = X_test[urine_cols]

clf 1g = sm.Logit(y_train, X_train_urine).fit(method='bfgs')
# print(clf_lg.summary())

# Evaluate performance
model_performance(clf_lg, X_train_urine.columns)

Current function value: 0.192927
Iterations: 35

Function evaluations: 36
Gradient evaluations: 36

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)
Precitions:

True positives: 97
False positives: 6
True negatives: 54
False negatives: 2
Precision: 0.942
Sensitivity: 0.98
Specificity: 0.9
Accuracy: 0.95
Missclass. Rate: 0.05

clf report:
precision recall fl-score support
0 0.90 0.96 0.93 56
1 0.98 0.94 0.96 103
accuracy 0.95 159
macro avg 0.94 0.95 0.95 159
weighted avg 0.95 0.95 0.95 159
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[354] :

[355] :

4.0.3 SVM for blood test only

clf_svm.fit(X_train_blood, y_train['class'])

clf svm.predict(X_test_blood)
model_performance(clf_svm, X_test_blood.columns)

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)

Precitions:

True positives: 101
False positives: 2

True negatives: 41
False negatives: 15
Precision: 0.981
Sensitivity: 0.871
Specificity: 0.953
Accuracy: 0.893
Missclass. Rate: 0.107

clf report:
precision
0 0.95
1 0.87
accuracy
macro avg 0.91
weighted avg 0.90

recall

0.73
0.98

0.86
0.89

4.0.4 SVM for urinalysis only

fl-score

0.83
0.92

0.89
0.88
0.89

X _train_urine = X_train[urine_cols]

clf_svm.fit(X_train_urine, y_train['class'])
X_test_urine = X_test[urine_cols]

clf_svm.predict(X_test_urine)
model_performance(clf_svm, X_test_urine.columns)

support

56
103

159
159
159

Cross Validation Results for Chronic Kidney Disease (+) vs. Healthy (-)

Precitions:

True positives: 101
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False positives: 2

True negatives: 54
False negatives: 2
Precision: 0.981
Sensitivity: 0.981
Specificity: 0.964
Accuracy: 0.975
Missclass. Rate: 0.025

clf report:
precision
0 0.96
1 0.98
accuracy
macro avg 0.97
weighted avg 0.97

[356]: # complete

recall fl-score

0.96
0.98

0.97
0.97

0.96
0.98

0.97

0.97
0.97
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56
103

1569
159
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